IV B. TECH I SEMESTER REGULAR EXAMINATIONS, NOVEMBER - 2023 PRINCIPLES OF SIGNALS AND SYSTEMS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 hours
Max. Marks: 70

Note : Answer ONE question from each unit (5 $\times 14=\mathbf{7 0}$ Marks)

UNIT-I

1. a) If $x(t)=u(t)-u(t-1)$, plot $y(t)=x(9 t+8)$.
b) Find the even and odd parts of the signal $x(t)=e^{-2 t} \cos (3 t)$.
(OR)
2. a) Check whether the following systems are Static, Causal, Time invariant, Linear, Stable: (i) $y(t)=x(t-3)+x(3-t)$, (ii) $y(t)=x\left(\frac{t}{2}\right)$.
b) Explain about Time scaling, Time shifting and Time reversal properties of signals with an example.

UNIT-II

3. a) Derive the relation between trigonometric Fourier series and exponential Fourier series.
b) Compute the Fourier Transform of
i) $\quad x(t)=\cos \left(\omega_{0} t\right) e^{-a t} u(t)$
ii) $\quad x(t)=e^{-a t} u(t)$
4. a) Find the Exponential Fourier series expansion of the signal shown below

b) State and prove the following properties of Fourier Transform.
(i) Time Shifting (ii) Frequency Differentiation.

UNIT-III
5. a) State and prove sampling theorem for band-limited signals
b) Determine the Nyquist rate for the given continuous time signal: $x(t)=6 \cos (50 \pi t)+20 \sin (300 \pi t)+10 \cos (100 \pi t)$.
(OR)
6. a) What is meant by convolution? Find the convolution of following signals by graphical method

$$
x(t)=u(t+3) \text { and } h(t)=e^{-3 t} u(t)
$$

b) Derive the conditions for distortion less transmission of a signal through a system

UNIT-IV

7. a) A causal LTI system is described by

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=x(t) . \text { Find } H(S) \text { and } y(t) \text { for } x(t)=2 u(t)
$$

b) Briefly explain the Constraints on ROC for various classes of continuous time signals of Laplace Transform.
(OR)
8. a) Find the Laplace transform of the signal using properties of Laplace transform $x(t)=\frac{e^{a t}-\cos (3 t)}{t}$.
b) Obtain the relation between Laplace transform and Fourier transform.

UNIT-V
9. a) State and prove the following properties using Z transform
i) Differentiation in Z domain
ii) Convolution of two sequences
b) Obtain the Z-transform of $x(n)$ given by
(i) $\mathrm{x}(\mathrm{n})=\mathrm{a}^{\mathrm{n}} \mathrm{u}(\mathrm{n})$ (ii) $\mathrm{x}(\mathrm{n})=-\mathrm{a}^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1)$
(OR)
10. a) Check whether the corresponding linear time invariant system [7M] characterized by the system function
$H(z)=\frac{-1-0.4 z^{-1}}{1-2.8 z^{-1}+1.6 z^{-2}}$ is stable and causal, if the ROC is
(i) $|z|>2$, (ii) $|z|<0.8$, (iii) $0.8<|z|<2$.
b) Use contour integration to determine the sequence $x(n)$ whose $[7 M]$ z-transform is given by $X(z)=\frac{1-\frac{1}{4} z^{-1}}{1-\frac{1}{6} z^{-1}-\frac{1}{6} z^{-2}},|z|>\frac{1}{2}$

